1)} MEASUREMENTS OF THE WIGGLER'S MAGRETIC FIELD
-/ AND PARAMETERS FIXING FOR THE EL-OP SIMULATIONS.

15-June-1997
by

A. Gover, Y. Pinhasi, A. Arensburg

In this report we present the results of measurements of the magnetic field along the
axis of the wiggler and a procedure to determine the saturation fields for the El-Op
simulation. )

Measurements of wiggler length:

The wiggler is composed of two entrance magnet pairs, 26 periods of-4 magnet
pairs arranged in a Halbach configuration and 3 exit magnet pairs as shown in Fig.
1. The wiggler period is 44.44 mm. The total calculated length of the wiggleris
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(5.555+0.5-5555) + 26x4x11.11 + (11.11 + $:555+0.5+5.555) = 1200.88mm

Recent measurements of the wiggler dimensions with a caliper (M. Kanter, May
1997) confirm these results, except that an unintended space of 0.5mm (more
accurately 0.4mm on the +y side and 0.6mm on the -y side) was detected between
the period magnets and the detachable exit magnet assembly. Consequently, the
total wiggler length that was measured end-to- end, 1201.5mm is consistent with
the calculated length to a 0.12 mm accuracy (see Fig. 2).

Measurements:
The measurement of the magnetic field of the wiggler’s components was designed
by M. Kanter and carried out with a high precision Hall probe model 9900 with two
axis probe type A99-1808, borrowed from Soreq NRC. We made 4 measurements
of the vertical (y) component of the magnetic field along the axis of the following
magnet systems:

1. The entire wiggler as it was removed from the Tandem after the last opening.
2. The entrance magnets assembly alone

3. The exit magnets assembly alone

4. A pair of longitudinal magnets (gradient measurement)

The distances of the centers of the entrance and exit magnets from the axis, for the 3
first cases above, are shown in table 1.

When we made the measurement of the entire wiggler (case 1), the distances were
according to the listing in column 1.



When we made the measurement of the separate entrance and exit magnets (cases 2
and 3), the distances were re-adjusted according to the listing of column 2 and 3 that
were considered to be optimal after analyzing case 1 (Note: these distances are not
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Figure 1: Schematic view of the Tandem FEL planar wiggler. The location of the
entrance and exit magnets correspond to an old optimization of E1-Op.
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Figure 2: Wiggler dimensions

Table 1
meas. 1 meas. 2 meas. 3

S (on the wigglen* ‘i
Entrance | a

dl. 18.05 mm

d2. 27.05 mm 31.05 mm

Exit

dl.

d2.

d3 18.05 mm 14.35 mm

* from llva'r report from 3/3/97.
** recently updated results.

The results of the measurements are shown graphically in Fig’s. 3,4 and 5 below.
The Hall probe we used has a measurement tiphead with 0.5 mm length and a
measurement accuracy of /mG in the lower range. Fields of the order of /kG were
measured with a 0.1G accuracy. The coincidence of the motion of the Hall probe
with the wiggler’s symmetry axis during the measurements is of the submillimeter
order of magnitude. Therefore we assume that the measurements are accurate
enough so that it is reasonable to adjust the simulation parameters by trying to fit the
curve of the calculated magnetic field along the axis to the measured curves of Fig’s
3,4 and 5. :

For this purpose it was necessary to write a computer code that transforms one set
of results so that the points at which the field 1s given in this set are equated to those
of the second set, and so they can be compared. In our case the entire wiggler was
measured at Jmm intervals and we could produce a simulation with the same spatial
resolution. However, in the case of the entrance and exit magnets, the measurements
were not taken with equal spacing along the z axis, therefore the code is necessary.
The function was written by A. Abramovich in the Matlab Language and is called
“matchaxi.m”. The parameters (saturation fields) adjustment procedure is done as
follows:
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Wiggler's field measured by Hall probe
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Figure 3: configuration 1, entire wiggler.
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Figure 4: configuration 2, entrance magnets.
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Figure 5: configuration 3, exit magnets.



Determination of the saturating fields for entrance and exit magnets

1. The magnetic measurements are done on some chosen geometry (position of the
magnets relative to the axis). The dimensions are given in table 1 cols. 2 and 3.
The measurements are done along the z axis with x=y=0.

7 A simulation is done with the magnets arranged with the same geometry as n
the measurement. We produce » points.

3. The matchaxi function is applied to the two sets of results so that the z
axis of the measurement set 18 matched to that of the simulation. We obtain the
measured field Bn(z;) and the calculated field B.(z; at the points z; with i=1..n.
Note that in the simulation B.(z;) is a linear function of the saturating field Bi.

4 For a certain choice of saturation fields, we determine the similarity between the
shapes of the measured and simulated magnetic field by calculating the
correlation coefficient: :

2.(B,~B,)(B.~B)

P =" [Var(B,) Var(B,)

Here Var(B) denotes the variance of a set of numbers B; and B denotes their
average. It should be pointed out that the correlation coefficient is insensitive to a
multiplication factor scaling one set (of data points) relative to the other.

5 We determine the saturating field by minimizing the following expression with
respect to the parameter &

1 n
F(§)=~2(B,(z)= & B.z))

6. The & that minimizes F'is found and used to scale the saturating field used
previously in the simulation to the new correct one.

This procedure proved very successful for determining the saturating field of the
entrance magnets assuming that the 4 magnets (1% pair and 2™ pair) were identical.
Therefore assuming that they all have the same saturating field we faced a one
parameter problem. The quality of the fit 1s determined by two tests:

1. The correlation between By, and B..
9 The minimum of the function F(&).

Table 2 shows these results for the entrance and exit magnets and for the entire
wiggler. It is clearly seen that the quality of the fit is not so good for the magnets at
the exit since there we had a two parameter problem. At the exit there 1s an
additional pair of magnets immediately after the wiggler periods, henceforth called
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‘symmetry magnets’, which are identical in dimensions to the period magnets (full
magnet) followed by two extra pairs of half size magnets (see Fig. 1). Thus at the
exit there are two parameters (saturating fields) one for the first pair and another for
the two successive pairs. In the first attempt we set the saturating field of the
‘symmetry magnets’ (the first pair out of the 3 exit magnet pairs) identical with that
of the wiggler periods and the saturating field of the two successive pairs was set
identical to that of the magnets at the entrance.

Table 2
T Corrclation cocfficient between B,, and B, | _square root of F(&) at its minimum
Entrance 0.99968 5.55 Gauss
exit 0.99876 13.98 Gauss
entire wiggler 0.9874 192 Gauss
wiggler (periods only) 0.99 194 Gauss

The coincidence of the absolute magnitude of the sets is ensured by the requirement
that F(&) is minimized. Table 2 indicates that the shape of the measured magnetic
field is close to that which was calculated by the EI-Op simulation (good correlation
coefficient). The last stage is to re-adjust the original saturation fields used in the
simulation by multiplying them with the £ that minimizes F(&).

Determination of the saturation fields for the wiggler magnets

The saturating field of the wiggler magnets, for the El-Op simulations, was
determined according to the requirement that the average of the absolute value of
the field at the (local) maxima and minima will coincide with the average as
obtained from the measurement with the Hall probe. The measurement of the field at
the axis, using the Hall probe, is shown in figure 1. We calculated the average,
<B>, of the field of the 26 largest negative peaks, B, and the absolute value of the
25 smallest positive peaks', B,', which is given by:

26 _ 25
<B>=3(% 2 |Bl|+%2 B)
i=1 i=]

This calculation yields an average field amplitude on axis of 1936.64 Gauss. We
used in the El-Op simulation, a saturating field of 8094 Gauss for the wiggler
magnets and 8256 Gauss for the additional magnets at the entrance and the exit.
This gave an average field at the peaks of 1936.24 Gauss which will be used
henceforth. The reason we averaged the positive and absolute value of the negative
peaks is that the measurement with the Hall probe might have been taken a little bit

'We skipped the maxima and minima near the edges so that the influence of the entrance and exit magnets is

minimized.



off the wiggler’s axis. This would have been the cause of an asymmetry between
positive and negative fields and could lead to an error had we used only positive (or
negative) peaks in the matching of the averages.

Determination of the saturating field for the longitudinal magnets:

The magpetic field of the longitudinal magnets is not supposed to vary along the z
axis? therefore we had to use a different technique to evaluate their saturating fields.
We measured the field of a pair of longitudinal magnets along the x axis, figure 6.
The saturating field was determined by calculating the derivative of B,(x) with
respect to x, as obtained from the measurement and equating it to the result obtained
from the simulation. In this case also, the free parameter is the saturating field of the
Jongitudinal magnet. We obtained a saturating field of 8840 Gauss with this method.
This saturating field produces a gradient of -25 Gauss/mm at the axis of the
wiggler, taking into account the gaps between the longitudinal magnets. -
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figure 6. Field of a pair of longitudinal magnets measured along the x axis.

Samra@gﬁeld for the various magnerts.

The saturating fields for the wiggler magnets that best coincide with the
measurements are summarized in table 3. These values are recommended as reliable
parameters for the simulations.

Table 3

Saturating field (Gauss)

1* entranc gnets 9498.5
2" entrance magnets 9498.5
Wiggler magnets 8094
Longitudinal magnets 8480 &—
1" exit (symmetry) magnets 7655.4 )
2™ exit magnets 8983.8
3™ (last) exit magnets 8983 .8

?In our wiggler we may witness a slight z dependence of the field since the long magnets do not cover the entire
length of the wiggler and there is a sinall gap between the magnets along the wiggler’s 114 cm.

Zf»



A graph of the measurement Vs. The simulation is shown in Fig. 6.1a for the
entrance magnets and Fig. 6.1b for the exit magnets. The reader can see that for the
vertical scale of the figure it is hardly possible to distinguish between the
measurement and the calculation. Fig. 6.1c Shows the measurement and calculation
of the field of the wiggler on the axis. The graphs do not coincide at the entrance
and exit but we are not concerned about this since these sections were not used in
the determination of the saturating fields for the wiggler magnets.

Measurement vs. simulation of By(z) for the entrance magnets
(Bs=9498.5 G)

200 T v | f’\

0
N O O WD = MmO -
m N O O 3 © v N0 N =
-20(;%. AR RBITIITIIY
» Position (mm,
8 o0l (mm)
3
< 600 T
@ | measurement
-800 + 1
1 scaled set
-1000 + i
v
~1200 -
Figure 6.1a: Entrance magnets.
Exit magnets - different saturation fields and scaled
1500 ¢ fo 0.945811 of original value
1,
000 + -
1000 l Solid line - calculated
- 500% Dashed line - measured
@ i
%] i
3 s
& O
S "TRecs:sBrtaNgLREEsBRETIEY
@ -500 + Position (mm)

Figure 6.1b: Exit magnets.



STXR 21} UO 19[331M o1} JO P

uonenuiis

usweainsesw -------
00sZ-
[unu] uonisod

[=]
'
-

008

uoyDINIVI S4 JUAUIINSDIU p1eyf 2213314

|91 SY} JO UOHB[NO[ED "SA JOWIRINSBIIA] 1019 2M3L

008"
—

[ssnoD)] praif onausojN



Optimization of the wiggler using the El-Op simulation

We decided to fix the distance of the correction magnets from the axis, at the
entrance and exit of the wiggler according to the simulation results. Fig’s 7-9 show
the simulation results for optimal beam transport along the wiggler, also we include
the parameters of the beam transport. Fig. 10 shows fhe double integral function of
the magnetic field, x(2), calculated on axis by EI-Op for the suggested optimal
transport conditions (Fig’s. 7-9). This function is given in terms of the calculated
field B,(z), the electron’s mass and charge e the entrance velocity Vo, and the
relativistic constant y by:

’e\ z z . o
—r _Uch (2'")dz"dz

x(2)=4

Note that the double integral gives a result qualitatively different from the
simulation. The later gives a straight electron path, parallel to the z axis (not
accounting for the wiggling) whereas the double integral yields a path that diverges
from the z axis at an angle of 20 mR with exactly the same magnetic field. Outside
the wiggler the divergence angle increases to almost 40 mR due to the effect of the
exit magnet. These results suggest that the pulse wire measurement does not give a
reliable measurement of the electron path since the signal is proportional to the
second integral of the field, which is different in our case (low energy, transverse
field variation) from the real trajectories of the electron.
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Figure 7: E1-Op simulation of electron path for optimal transport.
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# leraeli FEL Simulati m - [Additional Magnets]

Entrance magnets: the cell:

To edit values double-click on

Exit magnets: the cell:

Figure 9: Arrangement of additional magnets at the entrance and exit for

optimal transport (no betatron oscillation)



Second integral if the field at the axis
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Figure 10: Second integral of the field calculated by EI-Op

The wiggler arrangement

A practical problem that we face is that we can not adjust all the distances of the
magnet pairs from the axis in accordance with the optimal values suggested by the
simulation. In particular, the optimal distance between the second pair of entrance
magnets and the axis, as dictated by the simulation is d2 =35.] mm (see fig. 9) but
the aluminum support of the magnets does not permit a separation grater than 34.55
mm. This slight departure from the optimum position may be the cause of a small
deviation angle and a parallel displacement of the beam. It is important to make sure
that we can deal with this problem using the steering coils at the entrance to bring
the beam back to the axis. The effect is evaluated as follows:

we choose an arbitrary point inside the wiggler (e.g. z=0) and calculate the
coordinates and angles (of the electron) at that point, with El-Op, with the optimal
parameters of Fig. 9 (including d2=35.1 mm). These coordinates are then used as
initial conditions when El-Op integrates the equations of motion from z=0
backwards, but now with d=34.55. mm as in the real wiggler. The result of the
integration gives a deviation angle of 0.407 mR at the “exit” (which is actually the
entrance) instead of the zero mR that were obtained had we left the distance
between the second pair of magnets untouched. This result suggest that we may
Jeave the distance as 34.55 mm and correct the error with the help of the two
steering coils that are planned to be placed at the entrance of the wiggler. The result
~ of this simulation is shown In Fig. 11. The “exit” angle is too small to be resolved in
the plot.
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Figure 11: Simulation of the optimal electron trajectory, backwards for the real
distance between the second pair of entrance magnets.

The final positions of the magnets are shown in Fig. 12 and the solution for these
parameters is shown graphically in Fig. 13. Here again the it is difficult to observe
the difference between this solution and the optimal solution in Fig. 7 since they are
too close to each other. The second integral of the field for the feasible position of
the entrance magnets arrangement is shown in Fig. 14. Note that there IS no
observable difference between Figs. 10 and 14.
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Conclusions:

We can see by comparing figs. 7 and 10 that the precise solution to the electron path
differs from the “simulation” of the path given by the pulsed wire technique. It
follows that it would be wrong to arrange the correction magnets along the wiggler
and the entrance and exit magnets in such manner that the pulsed wire setup gives a
straight path using a long current pulse (path simulation). The correct procedure
should be to determine the pulsed wire entrance and exit “angles” from the second
integral of the field in the optimal transport configuration, and to make the
corrections on the real wiggler so that the pulsed wire experiment gives us the same
angles. This procedure may be difficult because of the sensitivity of the pulsed wire
measurement to the exact wire position relative to the wiggler axis. Though it 1s not
sensitive to misalignment m the y dimension, it is very sensitive to small
misalignment (even 50 um) in the x dimension where there is a strong gradient due
to the longitudinal magnets. | _

Taking all this facts into account we deduce that the logical procedure would be to
attain a straight second integral, with the pulsed wire setup, along the wiggler
periods section by addition of small magnets. We will also try to adjust the wire
position to the situation predicted theoretically: 20mR angle at the entrance and
40mR at the exit. If this will not be achieved, then corrections will be made in the

real experiment with steering coils.




